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Suppression produced among combatants exposed to mixed, nonuniform fires is
* given an operational explication through a 'sinale-round period of suppressive

effect' which is permitted to have a randm duration that may stochastically
depend upon miss-distance. Explicit formulas are derived for the expected
duration of periods of suppression and for expected detection times when the
underlying search activity is suspended during periods of suppression. Sup-
pression thus represented as a hiatus in combat activities, as is customary,
is shtwn in the case of search activities to produce such extremely long expected
detection times that even very small but nonzero detection rates during periods
of suppression make major reductions in those expected detection times.
Fractional suppression, a more satisfactory concept that permits nonzero
activity rates during periods of suppression, is introduced; and an explicit
formula for expected detection times in the presence of fractional suppressior
is established.
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ABSTRACT

Suppression produced among combatants exposed to mixed, nonuniform fires
is given an operational explication through a 'single-round period of
suppressive effect' which is permitted to have a random duration that
may stochastically depend upon miss-distance. Explicit formulas are
derived for the expected duration of periods of suppression and for
expected detection times when the underlying search activity is suspended
during periods of suppression. Suppression thus represented as a hiatus
in combat activities, as is customary, is shown in the case of search
activities to produce such extremely long expected detection times that
even very small but nonzero detection rates during periods of suppression
make m~ajor reductions in those expected detection times. Fractional
suppression, a more satisfactory concept that permits nonzero ictivity
rates during periods of suppression, is introduced; anid an explicit
formula for expected detection times in the presence of fractional
suppression is established.
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I. INTRODUCTION AND CONCLUSIONS

Svppression, as a concept, is given a simple operational explcation
through a 'single-round period of suppressive effect' which is associated
with each projectile impacting in the vicinity of a combatant. During
each such single-round period of suppressive effect, which commences at
some indicator event, the affected combatant is suppressed; at all other
times the combatant is unawppraeeed. A per;iod of suppression for a com-
batant that is unsuppressed begins with an event that produces a nonzero,
single-round period of suppressive effect; and it ends when the affected
combatant first thereafter becomes unsuppressed. Arbitrarily long random
periods of suppression for the affected combatant rr-y thus arise from
overlap between consecutive single-round periods of suppressive effect.

By proceeding from this definition, expected durations of periods of sup-
pression are deduc'ed under very general conditions for situations in which
the impact times of the associated projectiles are adequately represented
by independent Poisson processes with constant intensities. The resulting
model is mathematically exact, and it includes:

-Arbitrary, random durations for individual single-round
periods of suppressive effect that stochastically depend
on the miss-distance of the associated projectile

- An arbitrary number of different, nonuniform impact
distributions for each type of projectile

* Different distributional characteristics for the single-
round period of suppressive effect associated with eachdistinct pair of projectile-target types

The formulas which result are remarkably simple; they depend only on the
average durations of the random single-round periods of suppressive effect
and the average arrival rates for the associated rounds. Expected detection
times for search processes in which the search activity is suspended during
periods of suppression retain the same simplicity.

In those situations the expected durations of a period of suppression and
of a period to a detection grow exponentially both with the rates at which
projectiles impact and with the average durations of the probabilistically
different, single-round periods of suppressive effect. When the detection
rate during suppression is small but not identically zero, the corresponding
expected detection times can be much smaller than they are when that rate
is identically zero. Indeed, they can become small enough to make the usual
all-or-nothing representations of suppressive effect unsatisfactory for many
typical applications. Fractional suppression, a more satisfactory concept,
is introduced to accomaodate nonzero activity rates during suppression.

Exhibit I, following this page, summarizes well our theoretical findings.
The expected times needed by a suppressed combatant to make a detection
are plotted as a function of the impact rate in its vicinity for a selection
of 'suppression 'fractions', fractional rate, at which activities can proceed

HO1 N OIGAN ANALYTICS
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during periods of suppressive effect. The combat situation is such that
the expected detection time in the absence of suppressive fire is twenty
seconds, a situation which, in terms of fractional suppression, provides
the same expected detection time as one with fire that has no suppressive
effect whatsoever. Such ineffectual fire is characterized by a unit
suppression fraction (n * 1); and the associated expected detection time
is constant with respect to the impact rate, as the dashed line in the
exhibit indicates. More effectual fire of course forces the combatant
into concealment or into cover and tends to degrade progressively the
rate, scope, and quality of its activity.

Suppression models typically assume that the resulting degradation is
total: suppression introduces a hiatus in whatever activity the combatant
was pursuing. Nn the case of a search activity the search rate becomes
zero, and therefore the detection rate becomes zero as well. Because the
analytical formulas devised in the course of the subject investigation
permit the direct computation of expected detection times in the presence
of periods of total and fractional suppression, the consequences of that
assumption can be examined in relation to what happens when the detection
rate, although diminished by suppression, remains greater than zero.

When a single-round period of suppressive effect produces a hiatus with
a five-second durationo for example, expected detection times increase
substantially even for very low impact rates. They increase from the
dashed line (n - 1) at the bottom of the vertical stripes in the exhibit,
where the effect of the suppressive fire on detection is nil, to the curve
(n 0 0) at the top of the stripes, where the detection rate is forced to
zero during periods oV suppression. The divergence between the dashed line
and th~t curve, marked by the vertical stripes, 3mphatically illustrates
the suppression-induced extremes in expected detection times for rates of
impact up to one round per second. A r&te of impact producing only one
impact every ten seconds doubles the expected detection time. Suppressive
fires with single-round periods of suppressivt effect that force activity
rates to zero are thus overwhelming. For that reason whether the rate is
forced e=otZy to zero becomes a crucial question: if not, then repre-
senting suppression as a hiatus leads to a major misrepresentation of an
important combat factor and, in the case of search activities, to a major
overestimation of expected detection times.

Sippressive effect resulting in search rates that are one-half (n - 0.5)
to one-tenth (n a 0.1) of what they would be in the absence of suppressive
fires is prima facie much more plausible than that producing only an exactly
zero suppression fraction. The shaded region in Exhibit I shows the corre-
sponding range of expected detection times. Although it is less extensive
than the maximumn range, the extremes it covers are indeed great.

Small misestimates in the suppression fraction or its equivalent tend to
produce large errors in the resulting expected detection times. Small
variations in the impact rate can similarly produce large changes in the
resultin expected detection times, once a moderate or better rate has
been achieved. For all these situations the respective coefficients of
variation (ratios of the standard deviations to the corresponding expected

NOMMIOAP4 ANALYTtIC
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detection times) are approxtnately unity; hence, when the expected detection
times are moderate or larger, the random fluctuations about them will be
great. Both the expected detection times and the random fluctuations are
strongly amplified by even slight additional increases in the expected
detection time in the absence of suppressiun, Additional increases in the
duration of a single-round period of suppressive effect, however, have
little additional effect, except for very low rates of fire.

Fractional suppression thus shows that tha overall suppressive effect of
increased rates of fire reaches a point of diminishing return, after which
additional increaser in the rate of fire produce no appreciable increases
in expected detection times. Casualty poluction further limits such
increases in expected detection times, because a combatant must survive
in order to detect. The greatest changes in predicted expected detection
times are introduced by departures from zero-rate, all or-nothing sup-
pression; hence, for all but the lowest impact rates, the typical ideal-
ization of suppression as a hiatus is ill-advised.

Beyond that noteworthy, cautionary fact the understanding and quanti,'i
cation of suppression achieved during the subject invwstigation fociv;
attention on suppression's inherently voluntary nature, the singular
importance of which is emphatically illustrated by the major changes made
in the expected detection times by variations in the suppression fraction,
not to mention additional, large changes made in response to variatiqns in
the duration of a single-round period of suppressive effect. As suppres-
sion is voluntary, a cumbatant need never be suppressed, provided survival
is of no importance. Somewhere, however, between everyone's charging into
the sustained fire of machine guns -- a discipline entailing essentially
zero survival prospects -- And hi.ýing permanently, head first in a foxhole
with similar survival prospects, there exists a degree and a dur,ition for
a single-round period of suppressive effect, which may vary from combatant
to combatan÷ in accordance with their tactical roles, that optimizes sur-
vival prospects,

Suppression, in summary, cannot be qwant!'led in the sense that weight,
distance, or ever listI..; rro-.4 ca bc. be 1 uifferent from them
because it !s mainly voluntary and therefo;'e admits degrees as well as
sy-sematic and unsystematic variations. Examination of analytical re•"Alts,
of which Exhibit I is representative, and reflection thereon suggest two
major conclusions: .I

suppression idealized as a hiatus in combat activities
is analytically unsatisfactorv and Counterproductve
the degree and duration of sl..ie-round periods of suppres-
sive effect can be chosen to maximizo tacta' A dvantage. h

Joi•t'•y these conclusions provide a much improved vAntagc for considering
suppression: they suggest that the more importati qucsLion about suppres-
sive effect is not what it was in past situations, but rather whaL it
8hozZd be in a given combat situation to provide that balance between
immediate survival and ability to return fire which yiel'- the maximum
tactical advantage.



11. A SIMPLE SD£L FOR SUPPRESSION AND DETECTION

Suppression is initially idealized herein as a hiatus Introduced into a
combatant's activity by the nearby impact of a round. Such a hiatus, when
associated withea sinve round. is defined to sf'rt at the time of the
impact or other Indicitor and to continue for a jusitive duration there-
after. It is termed a sinoZe-zound peod of szpp'essiv effeoot; 'volley'
or 'burst' may, of course, be substituted for 'round' when appropriate.

The duration of a single-round period of suppressive effect is inherently
voluntary and accordingly may vary widely from combatant to combatant and
even from one combatant at a given time to that same combatant at another
time. Miss-distance, environ•ent, and round type aro additionalt importalit
sources of variations. However, because the duraticn is voluntary, speaking
of a constant duration is meaningful notwithstanding what may be its actual,
probably great variation from instance to instance.

So long as all inter-round impact times exceed the duration of a single-
round period of suppressive effect, the total time during which a combatant
is ý;uppressed is defined to be the sum of the individual durations. When
addititnal rounds impact during an existing period of suppressive effect,
that period will be prolonged, at least until 'tssation of the single-round
period of suppressive effect associated with the last of the additional
rounds. A period of suppression for a nnmbatant is consequently defined
to terminate when an Inter-impact tinte first exceeds the duration of a
single-round period of suppressive effect. The discipline thus prescribed
for the idealized combatant is that its combat activities are to be resumed
at the expiration of tho single-round period of suppressive effect associated
with the last impact in its proximity.

(1) Suppression at Its Simplest

Together these concepts determine a nearly irreducibly simple mathematical
model of suppression. It requires only

- a rPgion of suppressive affect associated with
each combatant

• a constant duration T for the single-round
period of suppressive effect caused by an
impact in the affect region

* a Poisson process N*(t) with constant intensity
A for the impact stream within the affect region

so that x and T, two parameters, alone need quantification. N*(t) is of
course 'he impact point process, the number of impacts in the affent region
in a duration t. Define S" to be the random duration of a resulting period
of suppression.

Without loss of generality the combatant may be assumed to be suppressed
initially by an impact in its region of suppressive affect at time zero.
It will thus remain suppressed at least until T ; whether it continues to

4 w4o"RIGAN ANALYTrIcs
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be suppressed at some time t depends on whether an appropriate number of

timely additional impacts occur. On the hypothesis that N*(t) a n , the

impact times of the n rounds in the affect region are uniformly and inde-

pendently distributed on the interval [O,t] because N*(t).is Poisson. If

Ti for i = 1, 2, ... , n respectively designate the random inter-impact

times for those rounds, and if Tn+1 is the duration between the last impact
and t , it follows from a theorem1 of De Finetti (with A designating the

extended 'and' operation) that
n+l

n+l * nl-
Pr{ A1 Tt 1t} t (10.1 tt)+

!1 1i i t

when (x)+ designates the positive part of x : (x)+ 0 0 for x<O, and (x)+ = x
otherwise. By virtue of an identity2 for the realization of none out of m

events (with m = n+l) , the probability that all the Ti are equal to or less

K • than T is:
n+l

n+l *ni
Pr{ A T (1-. +k -

0

Since the duration S of the period of suppression exceeds t if and only if
all the Ti are equal to or less than T , it follows that the right member
of the preceding equation is in fact Pr{S*>tlN*(t) = n) . Therefore, the

unconditional probability that S >t is

Pr{S*>t) = )k[x(t'k)+] k tk)keX[t'(t'kT)+]

after the resultant order of summations is exchanged and the inner extended

summation is put into closed form.

The right member of this equation is not convenient for the determination

of the expected value of S or its variance. Its Laplace transform, however,

is both convenient and intrinsically useful, as later considerations will
illustrate. Let £ be the Laplace transformation operator, and let s be the

transform variable. Termwise application of the fundamental transformation

HOCRIOAN ANALYTICS
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for powers of t , which may be written

f(t m'lLl. a sm

for positive, integral m , together with the shift theorem yields

£ (Pr{S*>t}] - -el(x+s))]/[s+xe"(A+s)T.

Since the moments of S can be obtained from Pr(S*>t} in the following
manner

0

it follows directly that E(S*) is merely the value of £(Pr{s*>t)] at
s =0; therefore,

E(S*) (eXT-1)/

The second moment similarly follows from the derivative of £[Pr{S*>t)]
with respect to s as evaluated at s = 0 ; and the variance clearly follows
therefrom as

Var(S) = (e2)T-2XTeXT-1)/X2

after the appropriate algebra is performed.

The exponential dependency of E(S) on A and T implies that small increases
in the impact rate in the course of an engagement can induce large, sudden
increases in the average duration of suppression periods, once a moderate
impact rate has been achieved. The similar growth in the variance suggests
very substantial fluctuations in those durations. In fact the coefficient
of variation for S* is asymptotically one.

Just how rapidly E(S*) can change is shown by Exhibit II, following this
page. For selected durations T of the single-round period of suppressive
effect, E(S*) is graphed as a function of the impact rate X in the region
of suppressive affect. When T is as small as two sgconds, slight changes
in the impact rate can produce great changes in E(Sw), the average duration
of a period of suppression. As Exhibit III shows, those great changes in
the average duration of suppression in response to slight variations in
the impact rate are matched by the correspondingly great changes caused by
slight variations in the duration of a single-round period of suppressive
effect. Consequently small discrepancies between assumed durations of
suppressive effect and actual durations can introduce great variations in
any durations of suppression periods extrapolated therefrom.

HOMtIGAN ANALYTICS
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Although these formulas appear new in the context of suppression, they are
well-known in other applications3 . They may also be derived by more general
means than those herein employed, notably by the methods of renewal theory.
The derivation just outlined is, however, direct and is the one that led to
the formulas in the context of suppression.

(2) The Simplest Suppression and Detection Interaction

Many search activities in the combat environment are characterized by an
exponentially distributed detection time. Any such activity consequently
possesses the Markov property for the exponential distribution4 and is
therefore easily adjusted to account for being suspended during periods of
suppression. Indeed, a detection may occur only between periods of suppres-
sion because the hiatuses they create block all such events while they last;
in other respects the search and bombardment activities are presumed inde-
pendent. The Markov property then insures that the random detection time
retains the acne exponential distribution regardless of the number and
duration of preceding periods of suppression and fruitless search. Since
N (t) is Poisson, it similarly insures that the duration between the end
of one period of suppression and the start of the next defines a family of
independent, identically distributed random variables.

Accordingly a basic suppression-search cycle exists. It begins with the
onset of a period of suppression and ends either with the onset of another
period of suppression or a detection, whichever first follows the initial
period of suppression. All cycles are identically and independently dis-
tributed in duration. The first part of a cycle of course has the duration i
S* that of a simple period of suppression. The last part is the period
between the cessation of suppression and either a detection or an impact,
whichever occurs first. Since the search activity and the bombardment
activity are independent aside from periods of suppression, the probability
distribution for the duration from the end of the period of suppression to
the end of the cycle follows directly.

Designate the duration by T Since T is the minimum of the time to
the first detection and the time to the next impact, which are independent,
exponentially distributed random variables, it follows that :1

> -(x+Y)t
e . ~

lPr{T >tl e , t.O

when y is the detection rate in the absence of suppression. A cycle thus
has the duration S* + T* ; and the probability that t ends with a detec-
tion, an event which is independent of both S and T* . is easily shownto be y/(y+x).

A combatant that is initially suppressed at the time zero may or may not
end its first cycle with a detection. The random number of cycles up to
and including that on which its first detection occurs has a geometric

NOf~tfOAIN ANALVTICS
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distribution. Designate that random number by ; it then has the
geometric probability density

Pr(N* n) -y-I-- n'lY+X L+XJ

Further, designate the random duration of the i-th cycle by C . Then
the time D* to the first detection is simply

N
D "Cn

n

a sum of independent, identically distributed random variables. The
average time E(D*) to the first detection following the onset of a
period of suppression is

E(D*) = (l/x + ii)eXT - l/x

which is an immediate consequence of the preceding expression for D

Suppression, when taken as a hiatus, is thus seen to have a great effect
on detection times. They grow at a rate even greater than the simple
suppression periods previously examined. Exhibit IV, following this
page, illustrates that rapid growth when the average detection time in
the absence of suppression is 20 seconds. The average detection time
in the presence of suppression is displayed as a function of the impact
rate for a single-round period of suppressivP effect of unit duration in
comparison with the average duration of a single period of suppression
under the same circumstances. The strong effect that all-or-nothing
periods of suppressive effect have on detection times is manifest.

Because the random duration of a suppression-search cycle is S* + T* ,
a sum of two independent random variables, the Laplace transformation
C(.) of its frequency function is the product of those for S* and T*
Since that for S* follows directly from that of its tail, which is
already established, and that for T* is immediate, their respective
product

C(s) = X+s ±i
A+se(+) x.h.+s

with s as the transform variable, gives the Laplace transform of the
frequency function for the duration of a suppression-search cycle. As
D* is the sum of N* such variables, which are identically distributed
and are independent both of each other and of N* , a simple calculation

HOMMIGAN ANALYTICII
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shows that the Laplace transformation of the tail of D may be written

R[Pr(* *t)] a- [Cl-C(s)J/[A+E-XC(s)]

in which s remains the transform variable. The expected value of 0*
already derived, as well as the higher moments can of course be easilyand directly obtained from this equation. Later a more significant usewill emerge in the context of fractional suppression.

RI
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111. MISS-DISTAMCES, WEAPON MIXES. AND ,ENRIZED SUPPRSS iO

No doubt the most apparent unsatisfactory assumption underlying thtse
formulas is the idealzed constant duration of the single roun period
of suppressive effect. Further, that duration is required to be inde-
pendent of miss-distance, and it must be the same for oach type of
round. Ignoring casualties is of course a shortcomings but the suppres-
sion process itself is not thereby grossly restricted, as it Is by the
aforementioned assumptions.

Several avenues of generalization for the simple model are thus suggested;
and they lead to broadly applicable formulas of remarkable simplicity.
The generalized suppression model established therefrom permits:

"* Random durations for single-round periods of
suppressive effect

"* Durations for single-round periods of suppres-
sive effect that depend on miss-distance

" Distinct characteristics for the periods of
suppressive effect associated with each ord-
nance or projectile type

"* Segregated, nonuniform delivery of any mixture
of projectile types

The general model thus encompasses a substantial number of factors that
affect suppression. Durations of suppression for each round type are not
only permitted to be distinct, but also they may be random variables with
different probability distributions, which may be functions of miss-distance.

Random durations for single-round periods of suppressive effect allow
differences in Judgment of an individual combatant to be reflected as
variations in the single-round suppressive effect of even identical
rounds impacting at the same distance. Durations of single-round periods
of suppressive effect that deterministically depend on miss-distance are
thereby randomized regardless and thus illustrate another variation in
the suppressive effect of identical rounds. Permitting single-round
eriods of suppressive effect to depend on miss-distance also allows
ocal nonuniformitles in projectile delivery to be faithfully represented.

(1) Random Single-Round Periods of Suppressive Effect

In the s'mple model all impacts in the region of suppressive affect produce
a single-round period of suppressive effect of fixed duration T ; in the
general model a projectile of the i-th type fired from the J-th source
produces a single-round period of suppressive effect with the random
duration Tij all of which are independently distributed. In the simple

10 HOIRIOAN ANALYTICS
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modrl there is nly or#e impact rate in the region of suppressive affect;
in the general model there is o-e such rate xi for tech projectile type
from eech source. The respective repac.; times of projctiles of each

type from each source are assumed to follow independent Poisser processes
with the respective intensities xtj

Presumably the duration of a single-round period of suppressive effect
depends on miss-distance. Given a particular combatant and situation,
a particular projectile type, and a fixnd mist-distance x , there is a
random variable T*(•) which is the duration of the single-round period

of suppressive effect that results from an impact a distance x from the
combatant. Of course, the duration of such A suppression period may be
taken as a function of the miss-distance. In either event, because the

miss-distance itself is a random variable, the resulting single-round

period of suppressive effect has a random duration.

As indicated above the random duration of this suppression period for a

projectile of the i-th type from the J-th source is T in which depen-
dency on miss-distance is implicit. If the function s!(t,x) is the

probability density for a single-round period of duration t arising from
the impact of the i-th projectile type a distance x from the combatant,

and if ft (x) is the probability density governing impacts at x by a

projectile of the i-th type from the J-th source, then the expected

(average) duration of a single-round period of suppressive effect is

E(T* 0•0 ffst,x)fij(x)dxdt
E(T~j) - I; (

The remarkable aspect of the generalized model is that these expected
values together with the average impact rates Ajj determine the expected
durations of juppression periods as well as expected detection times.

As in the simple model, for ar. entity to be suppressed for a duration t

there must be an unbroken chain of overlapped, single-round suppression

periods which together, from the beginning of the first to begin, to the
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and of the last to cease, constitute a duration t . Unlike the simple
model, the durations of the single-round periods of suppressive effect
are no longer the same in duration; short ones and long ones are haphaz-

ardly mixed, and many gaps between short ones may be filled by a single

long one. Despite this groat increase in physical complexity and a

comparable increase in mathematical difficulty, there Is little change

in the formula for the expected duration of a suppression period. The

cumbersome but necessary mathematical details are treated in Appendix A;

in the following only the major results are des:ribed.

For R round types and N fire sources define A , the combined impact rate

of projectiles in the region of suppressive affect, as follows:

R N

:ýi : iJ

As in the simple model, designate the random duration of an overall

suppression period by S* . Then the expected duration of an overall

suppression period in the generalized model is

E(S*) * ~exp RN xj(T ]-

a remarkably simple formula, which involves only th'.: expected durations

of single-round periods of suppressive effect.

When each round type is represented by a distinct single-round period of

suppressive effect which is a constant independent of miss-distance, the

formula simplifies further. In that case there are no random variations

in the duration of a single-round period of suppressive effect. For a

fixed round type all such periods are of identical duration. For the

i-th round type designate the duration of a single-round period of sup-

pressive effect by Tt . Because the Ti are functionally independent of

miss-distance, they are consequently independent of the source of fire.

Hence, the segregation of rates of impact by the source of fire is not

HOMMIOAN ANALYTICS
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necessary in this case. Accordingly, if A is defined by

N

then it designates the impact rate of the i-th type of projectile in the
region of suppressive affect. The expected duration of an overall period
of suppression is accordingly given by

tR

E:(S*) * exp A 1

In which S again designates the random duration of an overall suppression

period and x the combined impact rate.

(2) Expected Detection Times In the Generalized Model

Detection in the generalized model is conceptualized Just as it is in the
simple model. A combatant cycles between suppression and search until
it first makes a detection before the onset of the next suppression period.
Despite the greatly increased physical complexity eAcompassed by the general
model there is no proportionate increase in the complexity of the formula
for expected detection times. With D* again designating the random time
to a detection by an initially suppressed combatant, it can be shown, using
the argument advanced for treating detection in the presence of simple sup-
pression, that

R N

E(D) (1/y + l/A)exlp[: 1  i~~jE(T)]l

when y remains the parameter in the exponential distribution of detection
time in the absence of suppressive fires. Thus a simple, general, and
convenient formula is available for connecting the effect of suppressive
fires with the ability to return fires.

When the durations of single-round periods of suppressive effect are
assumed constant for a given projectile type a somewhat simpler formula
governs:

R

in which the Tt again represents the single-round suppression duration
assigned to the i-th projectile type, and A, designates the corresponding
impact rate.

M4ORIMOAN AN&ALYICG



IV. DURATIONS OF SUPPRESSION FOR UNDAMAPEU COMBATANTS

These formulas neglect casualties. While that is a minor omission
relative to the simple model, it is still a flaw. It tends to lengthen
erroneously the expected detection times, because it implicitly ignores
the fact that an entity must survive in order to detect. When a com-
batant survives the rounds impacting in its region of suppressive affect
during the suppression periods preceding a detection, the expected number
of such impacts is consequently reduced; hence, the expected time it is
suppressed is reduced and therewith its expected detection time.

How the duration of a period of suppression is affected is easily seen
in terins of the simple model. With 6 designating the single-round
damage probability and N(t) designating the event that the combatant is
undamaged during the time t , it is shown in Appendix B that the formula

EES*Iu(S*)] -•((+SXT)/(a +6e -1]/x

gives the expected duration of those periods of suppression during which
the combatant is undamaged. In situations in which no damage is possible
6 is zero, and E[S*IU(S*)] then equals E(S*) . For positive 6 it is always
less than E(S*) ; and it strictly decreases with increasing 6 until
finally, when 6 is one, it becomes T , the smallest possible period of
suppression in the simple model.

Survival prospects during a period of suppressito are best given by
the probability Pr{U(S*)1 that the combatant is undamaged during a
period of suppression. It is related to the expected duration E(S*)
of a period of suppression by the illuminating formula

Pr{U(S*)) - (1-6)![l+x6E(S*)]

which makes very clear how the probability of surviving a period of
suppression depends on the expected duration of those periods. As that
duration increases, Pr{U(S*)} decreases. Consequently periods during
which the combatant is undamaged should have shorter durations.

Whether the quantitative consequences of using E(S*) vice E[S*IU(S*)]
are major or minor obviously depends strongly on the single-round casualty
probability 6 . When it is small and the impact rate is small to moderate,
the consequences appear to be negligible. However, whenever it is not
small or the impact rate is high, the consequences are major. In such
cases the consequences are greater for damaged combatants; for instance,
if 6 is small and x moderate then E[S*IU(S*)] can be about ten percent
less than E(S*), while ECS*JD(S*)] can be twice E(S*). On the other hand,
when 6 is moderate ang X high, the reverse can easily obtain; E[S*IU(S*)]
can be about half E(S ), while E[S*IQ(S*)] exceeds it by no more than ten
percent or so. In either case, those periods of suppression during which
casualties occur are much longer than those during which there are none.
Combatants, in effect, are pinned down by suppressive fires for much
longer times when damage occurs -- a possibly surprising fact considering
the assumed total randomness of the fires.
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V. FRACTIONAL SUPPRESSION AND EXPECTED DETECTION TIMES

lect of casualties is not the only flaw in the generalized suppression
el. A more fundamental one is the Idealization of suppression as a

hiatus in the activity of the suppressed combatant. Although that handy
idealization is commonly used in modellin suppression, it is nonetheless
counterfactual. Suppressive fires slow down activities, but they do not
necessarily stop them. Idealizing suppression as a hiatus is adequate
only insofar as periods of suppression are considered in abstraction --
without any interaction with combat %ctivities.

Search activities are a case in point. Expected detection times in the
resence of suppressive fires can very easily become very long, as Exhibit
iV Illustrates. Simply because those times can be so long, the difference

between suppression as a stopping of all activity and suppression as a
slowing of it Is important. If suppression is truly a hiatus in combat
activities, then detection cannot be made during periods of suppression,
regardless of their durations. If suppression is anything less total,
however, detections will then frequently be made during periods of sup-
pression, particularly when their expected durations are long.

Suppression that is less than total is herein termed jfotioreZ suppression;
during periods of fractional suppression combat activities proceed at a
fraction of their unsuppressed rates. Search activities of the type pre-
viously defined, that develop a detection rate y in the absence of suppres-
sion, proceed with the reduced, fractional rate ny (for an appropriate n in
the unit interval) during periods of suppression. Expected detection times
therefore can never exceed /(rny) regardless of the duration of periods
of suppression. Fractional suppression and casualty production thus both
operate to decrease the duration of detection timis.

Idealizing a single-round period of suppressive effect not as a hiatus
in a search activity but as reduction in some major factor, for example,
the solid angle available to the combatant for search, captures a vital
characteristic of the interaction of search and suppression. A limit on
the efficacy of suppressive fires to inhibit detection is imposed; a point
of diminishing return is established. Increasing rates of fire no longer
produces progressively greater increases in expected detection times.
Instead, the increases in those times reach a maximum and then become
progressively smaller. Never can the expected detection time be forced
beyond 1/(ny) . A necessary logical boundary is thus incorporated without
which the suppression process itself is compromised.

What fractional suppression means is easily visualized In terms of the
example. An upright combatant, for example, typically has a field of
view that is much greater' than that available from a croucli;ng or a prone
position. In keeping with maximum simplicity no new region of intervisi-
bility is permitted to be introduced in shifting from upright to prone.
Nearby impacts which result in that combatAnt's taking temporarily a
position other than erect thereby introduce fractional suppression by
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reducing the solid angle available for search activity from that available
in an upright position to some smaller portion. As a result the detection
rate is decreased, and the expected detection time is increased. Impacts
in the vicinity of a crouching combatant similarly can cause the solid
angle available for search activities to be reduced to that portion avail-
able from a prone position. Thus conceived, fractional suppression makes
the counterfactuality of suppression as v "atus obvious.

Quantifying fractional suppression is straightforward in concept. The
fraction n itself, in terms of the example, is merely the ratio of the
steradian of the solid angle available to the search activity in the
presence of suppression to that available in the absence of suppression.
The search activity can accordingly be represented by two independent
processes, one characterized by the detection rate (1-n)y and the other
by the detection rate ny . The first process arises from search in the
solid angle that is unavailable during periods of suppression; the second
process arises from search in the solid angle that is always available.
Suppression always suspends the first process, but it never affects the
second.

Such straightforward quantification notwithstanding, an interesting
question develops when commonpl'ace approximations in search modeling are
introduced. If targets are uniformly distributed over the solid angle
and a glimpse model or a constant search rate model is employed, for
example, then the expected time to a (first) detection has the same value
for all solid angles within the initial one. Consequently, for such
representations, search through an arbitrarily small, ill-situated knothole
is as effective as search with an unrestricted field of view. However,
when intermittent intervisibility is the dominant factor and the model
reflects that dominance, then the fraction by which the solid angle is
reduced indeed directly and similarly modifies the corresponding detection
rate. The suppression-detection model herein explored is of course
directed to the latter situation.

Consequently, the random detection time D, associated with the first process
behaves exactly the same as the random detection time in the presence of
simple suppression previously examined after the associated detection rate y
is replaced by (l- )y . That random detection time D* associated with the
second process of course follows an exponential distribution in which the
parameter is the appropriately diminished detection rate ny . The random
time D*(n) at which the combatant, cycling between fractional suppression
and search, makes its next detection is clearly just the minimum of those
two random times. The tail of the distribution of D (n) is thus

Pr{D*(n)>t = Pr{D*>t ,D2>t} = Pr{D1>t}efnYt

in which the rightmost member follows from the assumed independence of the
underlying processes. That form of the tail Pr{D*(n)>t} is handy for
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establishing the moments of D*(n) as those of D* were established initially.
Indeed, using that form the n-th moment of D (n) is given by

E[D*(n)nn n lPr'D*>t~e nytdt

which is essentially nothing bther than the (n-l9-th derivative of theD,
previously established Laplace transform £cPr{D >t)] of the tail of D
after ny is substituted for the transform variable and (]-n)y is substi-
tuted for the original search rate. Consequently, if the variable z is
defined by

.(X+ny) [A + (1 -n)yJ
! ~~~(A,.y)[A, + nye(A`+nY)T]"

•Ithen the expected detection time E[D*(n)] in the presence of fractional

i: suppression is

E[D*(n)]i!•.-, ny[(1-n)y +X)(I-z).]

Regrettably, the algebraic simplicity of the expected detection time E(D*)
in simple suppression is lost, but a vital recognition of diminishing
returns, which is much more than compensatory, is acquired.

Although the variance is slightly more cumbersome, it too follows easily
from the Laplace transform of the tail of D*, after the second moment is
obtained by differentiation. Define the intermediate variable z' by

+n X[-..ny +AL-(X+ny +

and the variance can then be written

Var[D*(n)] = 2 ( -nyr +Xj lz)](l-z. + T(n)]-E2[D*(n)]

Despite its more cumbersome form, the variance is closely related to the
expected value, because the coefficient of variation is very nearly unity
for a wide range of situations, including all those herein considered.

How fractional suppression affects expected detection times is shown in
Exhibits V and VI, which follow.this page. In both those exhibits the
suppression fraction n takes the values: O.C, 0.05, 0.1, 0.25, and 0.5
The first value, of course, corresponds 0. to he usual idealization of
suppression as a hiatus; the values from t.o to 0.5 are perhaps more
representative. In each exhibit the expected detection time in the
absence of suppression is 20 seconds.
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In Exhibit V the single-round period of suppressive effect is 5 seconds,
and the rates of impact A are small to moderate, yet variations in the
expected detection times are great. 'When A~ is about 0.1 the range is
already significant, and it increases substantially with increases in A
When A equals 0.5 the slight difference in the suppression fraction n~
between total suppression (n - 0) and nearly total suppression (n~ a 0.05)
results in an almost 40 percent reduction in the expected detec.tion time.
The difference in detection times arising from total suppression and the
next level of reduced activity (n1 - 0.1) exceeds 50 percent. Thus, if n~ is
about 0.1 instead of 0, then the expected detection time is ov?,, *stimated
by 120 percent. The percentage differences increase slightly v" Th smaller
expected detection times for detection in the absence of suppression and
decrease slightly with larger ones.

A single, high impact rate (A a 1) is used in Exhibit VI, and the expected
detection times for the selected suppression fractions are graphed as
functions of the single-round period of suppressive effect T . The effect
of the high impact rate is plain. When T is about 2.5 seconds, the range
of detection time variations matches the maximum encountered in Exhibit V.
For values of T larger than 2.5 seconds, that range, which is already more
than substantial, becomes gross. When T is about 5 seconds, the expectedK. detection time for all-or-nothing suppression (n -( 0) is nearly ten times
greater than that with a suppression fraction ni of only 0.05 .

For moderate and higher impact rates and moderate single-round periods
of suppressive effect, small variations in the suppression fraction thushproduce large to gross changes in the expected detection times. As the
exhibits show, particularly Exhibit VI, fractional suppression strongly
limits the increases in expected detection times that can be obtained by
increases in the single-round period of suppressive effect; diminishing
returns from the longer periods are most apparent. Fractional suppression
similarly limits the increases in detection times that can be obtained from
increases in the rate of impact, and the diminishing returns it imposes are i
equally impressive, as Exhibit I indicates. Casualty production further
limits such increases in expected detection times. The greatest changes
In expected detection times occur relative to departures from all-or-nothing
suppression; hence, for all but the lowest impact rates, idealizing sup-I
pression as a hiatus is ill-advised.

Obviously fractional suppression can be extended to allow retuvr of fire
following a detection. Thus suppression can be more closely related toI
combat activities, and its role in optimizing tictical response can be
better identified and understood.
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APPENDIX A

EXPECTED SUPPRESSION DURATIONS ARISING FROM
RANDOM SINGLE-ROUND PERIODS OF SUPPRESSIVE EFFECT

F Various formulas have been given in the preceding pages for the relation-
ship between the expected duration of an overall period of suppression
and the expected durations of the individual single-round periods of
suppressive effect that together make up the overall period. The objec-
tive of this appendix is to establish a simple, general formula of which
the ones previously employed are immediate consequences. In the gener1al
situation the rounds impacting in the region of suppressive affect have
impact times that are governed by a Poisson process of intensity A ; and
the associated individual single-round periods of suppressive effect are
independently and identically distributed random variables, a particular
but unspecified one of which is designated T*. Specifically, for an
overall random duration S* of a period of suppression arising from single-
round periods of suppressive effect that have random durations distributed
as T* this appendix demonstrates that the remarkably simple formula

E(S*) = EexpxE(T*) -1]J/x

expresses the expected duration of an overall period of suppression in
terms of the expected duration of a representative constituent single-
round period of suppressive effect and A , the rate of impact in the region
of suppressive affect. In accordance with the previous considerations T*,
which must be positive with probability one, is independent of the impact
time or indicator event associated with the arrival of the corresponding
projectile, although it can stochastically depend on the associated miss-
distance. The details of that dependency, however, do not enter into the
necessary derivations and are therefore not further explicitly considered.

C~nsider first the case in which T takes discrete values. Designate by
A the random duration of a suppression period produced by any mixture of
all the different-valued, individual single-round periods of suppressive
effect except the smallest. Designate by B * the duration of a period of
suppression created by the smallest single-round period uf suppressive
effect only. An overall period of suppressive effect thus consists of a
sequence of such a-periods and b-periods. As the impacts in the region
of suppressive affect are governed by a Poisson~ process with intensity X
impacts entailing single-round periods of suppressive effect in excess of
the minimum -- those periods the mixture of which create A* -- are also
governed by a Poisson process; similarly, those rounds giving rise to
the minimum single-round period of suppressive effect also constitute a
Poisson process, which is independent of the erevious one. Designate
the intensity of the process giving rise to A by and the intensity of
the one giving rise to B* by a ; of course, x +
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In the following paragraph a formla expressing E(S*) in terms of E(A*),
the indicated rates of impact, and the duration B of the shortest single-
round period of suppressive effect is established. As will be Shown,
that formula inductively generates the explicit formula for E(S*) in all
cases in which the random single-round period of suppressive effect is a
mixture of a finite number of different nonrandom durations. The situation
in which the individual single-round periods of suppressive effect give
rise to random variables with continuous distributions follows therefrom
by a limit argument.

An overall period of suppression S must naturally begin with an a-period
or a b-period. Since all the durations of single-round periods of sup-
pressive effect which constitute a-periods exceed the duration B of that
single smallest period which constitutes the b-periods, the end of any
a-period can be considered to be the beginning of a b-period because A* is
greater than B with probability one. An overall period of suppression that
begins with an a-period consists of one or more independently distributed
a-periods that are Joined together by b-pe;iods. So long as the gaps between
a-periods are covered by b-periods the overall period of suppression con-
tinues. When, for the first time, a gap between a-periods is not filled ky
a b-period, the overall period of suppression terminates. Designate by F
that portion of a gap between a-periods which is filled by a b-period. As
the last B units portion of an a-period can be taken as the beginning of a I
b-period, F* is the smaller of B -B and H* , the time of the next impact
of a round with a single-round period of suppressive effect of the type
appropriate to an a-period; thus F* is defined by

F min(B*- B, H)a

With F designating the event that a gap is filled, that is,

F - {B -B>Ha}

it follows that the gaps between a-periods that are indeed filled by
b-periods have a random duration the distribution of which is the conditional
distribution of F* given F . When an overall period of suppression that
began with an a-period is terminated by an unfilled gap between a-periods,
the portion that may be fillEJ has a duration the distribution of which is
that of F* given that F . An overall period of suppression that begins
with an a-period thus consists of that a-period, zero or more filled gaps
followed by a-periods, and one unfilled gap. Obviously the number of
filled gaps has a geometric distribution with parameter f - Pr{F} so that
the expected number E(N*) of filled gaps followed by a-periods is f/(1-f)
Therefore the expected duration of an overall period of suppression E(S*IA)
that begins with an a-period is given by

E(S*IA) = E(A*) + E(N*)[E(A*) +E(F*IF)] + E(F*IP)

which may be simplified by replacing E(N*) by f/(l-f) and then replacing
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the sum of the two suitably weighted conditional expectations of F by
its unconditional expectation, which is equal thereto. Thus, it follows
that

E(S* IA) - E(A*) +E(F*)

after the simplifying operations are performed.

When an overall period of suppression begins with a b-period, there is
again a gap that must be filled for the overall period to continue. In
this case it extends from the beginning of the initiating period to the
onset of the first a-period. If the b-period is sufficiently persistent
to meet the first a-period, then the additional duration of the overall
period is E(S*IA) , for which a formula is already established; otherwise
the end of the a-period is the end of the overall period. Represent by
R* the portion of the gap that is filled by the b-period. R* is thus either
the end of the b-period or the first impact of a round with a single-round
period of suppressive effect that belongs to an a-period, whichever occurs
first, that is

R* min(B*, H)

Because the connection with an a-period that is necessary to sustain the
overall period occurs if and only if the event R that B* kH* occurs, the
expected duration of the overall period given R occurs is clearly

E(R*IR) + E(S*IA)

On the other hand, when R does not occur the overall process is terminated;
hence, its expected duration is only

E(R*Ik)

in that case. With r equal to the probability Pr{R} that the initiating
b-period persists sufficiently long to meet the first a-period, the
expected duration E(S*|8) of an overall period of suppression initiated
by a b-period is therefore

E(S*1t) = E(R*) + rE(S*IA)

after the suitably weighted conditional expectations of R are replaced
by its unconditional expectation.

This result and the previous one for E(S*IA) permit the unconditional
expectation E(S*) for the duration of the overall period of suppression
to be expressed in terms already established. First note that it may be
written

E(S*) - j E[E(S*IA)+sE(S*NB)]

with • and B continuing to designate the impact rates of rounds with
HO1MRiOAN ANALYTICS
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single-round periods of suppressive effect appropriate to a-periods and
to b-periods respectively. Substituting the previously established
relationship for E(S*IB) permits E(S*) to be expressed in the form

E(S*) - E[(+Br)E(S*IA)+BE(R*)]

after the necessary simplifications are made. Observing that r a mE(R*)
which is obvious when the right member is expressed in tail form (as is
done further on), permits r to be eliminated. After simplifying the result
is

E(S*) - ½l+E(R*)Jl+mE(S*IA)J -A'

in which only the conditional expectation E(S*IA) cannot yet be directly
evaluated. Using the previously established relationship

E(S IA) a (E(A*) +E(F*)]/(1-f)

and observing that f • cE(F*), which like the similar preceding expression
for r is also obvious when the right member is expressed in tail form,
permits the substitution

1 +aE(S IA)
1 -aE(F*)

to be made in the right member of the preceding equation for E(S) . The
result is that

I + OUR*E(S*) [1 +aE(A*)] 1
1 - *E(F*)

in which only E(A*) cannot yet be directly evaluated. The factors having
E(F*) and E(R*) as terms are easily treated, as the following shows.

Evaluating E(F*) and E(R*) is facilitated by using the tails of their
respective probability distributions and noting that since

F min(B*- B, H*)
a

and

R= min(B*, H.)

the latter is essentially a earticular case of the former. By noting
F*> t if and only if both B - B> t and Ha > t and by recalling the
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representation of the expected lue of a random variable in terms of
repr sent tio of he er c s ma bewritten

its tail the expected value of F"m bwttn

E(F*)(B>t H)td

"0 I
Since B is independent of Ha ,which is exponentially distributed with
parameter i , it follows that

E(F*) B prB*>B+t~euatdt

f0

the right member of which is easily expressed In terms of the Laplace
transform of P(t) , the previously established tail function (cf. Section II)
for the duration of a simple period of suppression. After the necessary
substitutions are performed E(Fw) is given explicitly by

from which the explicit result

1-aE(F*) 
" -- ""
a+oe- (u+O)B

follows by successive simplification. An almost identical, simplar deri-

vation shows that

I+$E(R*) - X

Accordingly, after substitution in the previous formula for E(S*) , the
relationship

* 1 * d I~
E(S*) - jl+oE(A*)]e ½

is demonstrated. Thus E(S*) , the expected duration of the overall period,
is Inductively expressed in terms of E(A*), the expected duration of the
period formed when the impacts associated with the minimum, single.-round
period of suppressive effect are ignored, and the impact rate 0 and
expected duration B of those minimum periods.

A simple notational change makes the formula's sccpe apparert. Recalling
that T* is the random duration of a single-round period of suppressive
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effect, which has been assumed temporarily to be discrete, define its
probability density to be

Pr(T -T} a pi i - 1, 2, ... , n

for Tr >0 and T, < ti+1 . Because the overall impact process is Poisson,
the impact times of those rounds producing only a single-round period of
suppressive eff(.ct with duration Ti themselves form a Poisson process
with intensity xi -Ap* . The n thus segregated impact processes are
obviously independent, and each permits only a single nonrandom single-
round period of suppressive effect. Collectively they form the overall
impact process with intensity X and the random single-round period of

suppressive effect with duration T

Define S1 to be the duration of a period of suppression produced by the
impact process associated with Tn , the longest single-round period of
suppressive effect; S2 to be that associated with Tn-l and Tn , the two
longest single-round period of suppressive effect; .... ; and, finally,

Sn to be that associated with all the T, . Applying the formula for
E(S*) first to S1 , which plays the role of A , and the impact process
associated with T. 1 as the b-period process yields E(S*) . Using the
res-lting formula for E(S2) as the new E(A*) and the impact process
associated with Tn2 as the new b-period process yields E(S*) . Finally,

by continuing in this manner, E(Sn) is reached. Consequently, as these

successive evaluations show, the simple formula

E(Sn) [e xp

gives the expected value of S for any n arising from a discrete valued
* ~n *

T . As A is by definition XPr{T Ti) , the summation in the exponen-
tial function may be written XE(T); therefore,

E(S*) [expxE(l*)-l]

is established for all random single-round periods of suppressive effect
that have discrete durations.

HORRIOAN ANALYTIC%



A-7

The generalization to continously distributed random durations for the
single-round periods of suppressive effect is straightforward. Let s(.)
designate the probability density for a single-round period of suppressive
effect, and define

P1  5 (Tt)A?,

for 1 a 1, 2, ... , n . The probability that T* takes a value in the
neighborhood of Ti accordingly is pi . Defining k, to be Apt and assoc-
ctating it with the impact process producing single-round periods of
suppressive effect with durations in the neighborhood of T1 produce an
overall process that approximates the actual process as closely as
desired. Furthermore, for all n the expected duration E(S*) of a period
of suppression is given by a formula containing the sum

n

- which, in terms of the probability density s(.), is in fact

n

X T S(Ti)AT

the Riemann sum approximating the integral

X fts(t)dt

0

which is of course just XE(T*) . Therefore, after the appropriate limits
are taken, the expected duration E(S*) of a period of suppression is

E(S*) *-[ EexpxE(T*)-l]

for a single-round period of suppressive effect with the arbitrarily
randomly distributed duration T'. The formulas discussed in the body
of this report all follow from this equation by merely particularizing
the distribution of T*. Nonuniform fires, for instance, are expressed
by merely taking T* to be governed by an appropriately mixed distribution.
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APPENDIX B

CASUALTY PRODUCTION AND
DURATIONS OF PERIODS OF SUPPRESSION

Casualty production &nM suppression are probabilistically Interrelated.
Combatants that are undamaged after exposure to fires tend to have
experienced fewer impacts in regions of nonzero vulnorability. If the
typical round that impacts in a combatant's vicinity has a probability
a of damaging the combatant, then, on thA average, the number of rounds
that impact in the vicinity of an undamaged conbatant decreases with
increasing 6 even though the areal impdct probability density is uni-
formly random. Whether a combatant is damaged by suppressive fires
consequently affects the number .td duration of the periods uf suppres-
sion experienced by that combatant. This appendix quantifies the prob-
abilistic (but not interactive) interrelation between simple suppression
and casualty production and derives the formulas discussed previously.

In the case of simple suppression only one round type 's considered,
and it impacts in the region of suppressive affect with the rate A ; as
before, the impact times or indicator events are governed by a Poisson
process with A as its intensity. For simplicity the combatant's vulner-
able region is limited to being a subregion of its region of suppressive
affect, and their relativo disposition is characterized by the probability
6 that an impact in the region of suppressive affect damages the combatant.
Let U(t) designate the event that the combatant is undamaged by the rounds
impacting in its region of suppressive affect between time zero and t .
In keeping with the structure of tne simple suppression model, an initi-
ating impact takes place at time zero and the random additional number of
rounds N*(t) impacting between zero and t has a Poisson distribution with
expectancy xt I If N (t) -n and the combatant is to be undamaged at t
it must not be damaged by the n+l impacts. Hence, since the rounds are
independent, the probability Pr(U(t)IN*(t) -n) that a combatant experi-
encing an impact at time zer. is undamaged at time t after an additional n
impacts is of course (1-S)nfl , the probability that none of the n+l
rounds produces damage. As N*(t) follows a Poisson distribution with
expectancy At , the equation

Pr(Ut)} a (1-6)e"t

gives the probability Pr{U(t)) that an undamnaged combatant initially
suppressed at time zero remains undamaged during the time t. Consequently,
the conditional probability Pr(N*(t) *njU(t)) that n additional impacts
occur between zero and t when the combatant remains uniamaged is given by

Pr(N*(t) -nJU(t)1 r

and N*(t) remains a Poisson process when there is no damage, but it then
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has a new intensity (1-6)x , which is simply the average rate of impact
of rounds producing no damage.

In order to calculate the expected duration EES*NU(S*)] of a period of
suppression during which the incoming fire produces no damage, it is
necessary to derive a formula for the probability Pr(U(S*)} that the
combatant is undamaged at the end of the period of suppression. Define
T* to be the random time at which an undamaged combatant that is initially
suppressed by an impact at time zero first becomes damaged. As the prob-
ability Pr{T >t} that T* exceeds t is the probability Pr(U(t)) that
the combatant is undamaged during t , the probability distribution for
T* is simply

Pr(T*<t) - I-(I-6)e"•xt

which has an atom of mass a at tuO . The probability Pr(U(S*)} that
the combatant survives the suppression period is conversely simply the
probability Pr{T* >S*} that the first damage occurs after the period of
suppression. Consequently, by expressing Pr{T* >S*} in terms of the
condition T* -t it follows that

Pr{U(S*) f (r{S*<tlT*t~dP(T*t)

f0pg

•-6-(1-6)6x Pr{S*>tlT* -tle'8xtdt, :

"0

after the integrand is expressed in tail notation, and adjustment for the
saltus at zero is made. For the duration S* of a period of suppression
to exceed t given that damage first occurs at t , suppression must be
maintained through the time t, during which the impact rate in the region
of suppressive affect is only (1-8)X . Hence, tha latter integrand is
Just the probability P(t) =Pr{S*>t} that the duration of a period of
simple suppression exceeds t , which is already established (cf. Section II),
when the impact rate is (1-6)X instead of A . The integral itself is simi-
larly merely the also alreaWy established Laplace transform of the P(t) so
modified, with 6X replacing the transform variable. Therefore the proba-
bility Pr(U(S*)} that the combatant is undamaged during a suppression
period is given by the formula

Pr{U(S*)) '

after the necessary substitutions and simplifications are made.

Similar reasoning is applicable to the Joint probability Pr{S*>t, U(S*)}
that the duration of a period of suppression exceeds t and the combatant
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is undamaged for the entire period. Expressing U(S*) in terms of T
as before yields

Pr(S >t, U(S*)} t Fr(t <S ;

and representing the right member in terms of the condition that T =x
yields

[. i*'00
Pr{S >'t, -(*) ' 1 -66 P(*tT x P{*xT x]'Xd

"t

when the conditionalized version of the right member is written in tail
notation. Integrating this expression from zero to infinity with respect
to t results in

(S >t, U(S*)}dt ( (-6- 6 xt)Pr{S*> t}e-sxtdt
000

after the order of integration is reversed. As the conditional probability
in the integrand is i;he same as that previously encountered In the evalua-
tion of Pr{U(S*)} , it also may be expressed in terms of P(t) with A
replaced by (l-6)x and, consequently, the integral itself in terms of its
Laplace transform, with 6x again replacing the transform variable. The
only significant difference is the occurrence of t in the first factor of
the integrand; it introduces the first derivative of the modified transform
as well. Dividing both members of the preceding equation by PFr{U(S*),
of course makes the left member the expected duration E[S*fU(S*)] of a
period of suppression during which the combatant is undamaged. After the
resulting right member is expressed in terms of the previously established
Laplace transform results with the indicated substitutions and of the
previously derived formula for Pr{U(S*)} , the very simple formula

** 1 r +6XT
E[S*IU(S*)] -

emerges as a consequence of algebraic simplification. Of course, when 6
is zero it becomes E(S*) , the unconditional expected duration, as it
should.
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